Big Data: как применять и анализировать большие данные?
Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.
В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.
Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.
Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.
Анализ методов хранения данных
В современном мире большие объемы данных являются незаменимыми ресурсами, однако их использование может оказаться неэффективным, если они не будут обработаны и соответственно использованы. Для обработки больших данных используются методы, которые состоят из нескольких этапов. Первым шагом является сбор информации из различных источников, включая серверы, базы данных и другие устройства. Далее следует обеспечить их хранение, обработку и защиту от потери.
В настоящее время для хранения данных используются как собственные вычислительные ресурсы, так и облачные решения. Тем не менее, использование собственных ресурсов может привести к проблеме масштабирования, а также к дополнительным расходам на поддержание и обновление оборудования. При этом, в периоды пиковых нагрузок, физический сервер может выйти из строя, при этом перестраховка приводит к неоправданным расходам.
Использование облачных решений для хранения данных позволяет избежать данных проблем и обеспечивает быстрое масштабирование и резервирование вычислительных ресурсов. В облачных решениях есть возможность быстро увеличить объем информации, а также обеспечить надежность, отказоустойчивость и гибкую настройку. Таким образом, каждый индивидуальный подход должен быть оценен в соответствии со спецификой бизнес-задач, требующих обработки данных.
Перед нами завершающий и наиболее значимый этап работы с большими данными — их анализ. Он играет ключевую роль в использовании потенциала Big Data в бизнесе. Именно анализ помогает избавиться от ненужного и выделить наиболее ценную информацию для компании.
Существует множество методов анализа больших данных. Охватить все из них в рамках данной статьи невозможно, поэтому мы расскажем о наиболее важных.
Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.
Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.
Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.
В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.
За счет применения Big Data анализ статистики значительно уточняется. Важно, чтобы выборка данных была максимально представительной, в этом случае результаты анализа будут более точными и достоверными.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какими характеристиками обладает Big Data?
Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:
1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.
2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.
3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.
С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).
Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.
Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.
Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.
Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.
Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.
Внедрение новых технологий
Технологические компании используют возможности анализа Big Data для создания интеллектуальных продуктов и сервисов, которые способны решать принципиально новые задачи. Одним из примеров таких продуктов является платформа «вычислительной биологии», разработанная в США. Эта платформа предлагает возможность видеть взаимодействие химических веществ с сигнальными рецепторами клеток организма. Благодаря инструментам Big Data, настоящая революция в фармакологии уже не за горами: платформа позволит находить и создавать лекарственные препараты, которые точно попадают в цель.
Анализ больших данных уже используется в медицинских исследованиях для ускорения и повышения точности результатов. На конференции DUMP, которая проходила в Уральском регионе, были представлены данные об использовании Big Data в медицинских исследованиях. Использование новой технологии в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
В Европе использование анализа больших данных в медицине более распространено. Исследования в этой области показали, что некоторые генетические факторы могут быть связаны с заболеваемостью раком. Была проанализирована информация на 150 000 пациентов, и выявлены факторы риска возникновения заболевания.
Внедрение новых технологий в медицину позволяет значительно повысить эффективность медицинских исследований и медицинской практики в целом.
Изучение поведения клиентов
В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.
Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.
Обеспечение безопасности транзакций является одним из важнейших приоритетов для банков. Сегодня они используют большие данные, чтобы улучшить методы выявления мошеннических операций и предотвратить кражу персональных данных клиентов.
Одним из инструментов, используемых банками, является анализ Big Data и машинное обучение для создания моделей поведения честных пользователей. Любое отклонение от этого поведения сигнализирует службе безопасности о возможной угрозе.
"Сбербанк" был одним из первых банков, который начал использовать подобную систему еще в 2014 году. Они внедрили систему сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы данных. Благодаря этой системе была достигнута большая точность идентификации клиентов, а количество случаев мошенничества снизилось в десять раз.
Улучшение производственных процессов с использованием Big Data
Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.
Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.
Прогнозирование на основе больших данных
При использовании больших данных возможно строить прогнозные модели, выявлять закономерности и предугадывать поведение людей и процессов в будущем. Примером могут служить прогнозы спроса на товары и услуги, успешность рекламных кампаний и эффективность взаимодействия с клиентами. Также прогнозные модели могут применяться в различных отраслях, включая образование для предположений о будущей успеваемости учащихся и эффективности программ.
Прогнозная аналитика на основе больших данных широко используется в авиации. Компания Airbus, например, планирует минимизировать количество случаев, когда самолет не выполняет полет из-за выявленной неисправности, благодаря предиктивному обслуживанию к 2025 году. Компания Lufthansa Technik уже внедряет платформу, которая предсказывает сроки замены деталей самолета.
Небольшая статистика
Консалтинговая компания Accenture провела исследование в 2014 году, опросив руководителей 1000 компаний из разных стран мира. Было обнаружено, что 60% из них уже внедрили системы анализа больших данных и были довольны результатами. Участники опроса отметили создание новых продуктов и услуг, увеличение количества способов заработка, улучшение клиентского опыта, а также повышение лояльности клиентов среди основных преимуществ Big Data. Источник: https://www.tadviser.ru/.
Фото: freepik.com